On Models and Theories
with applications to economics

Richard L. Epstein1

What is a model or theory? What constitutes a good model or theory?

These are questions at the heart of the nature and practice of science. Yet no
satisfactory answers have been proposed that relate well to the actual work of
scientists or that are generally accepted. Nowhere is this more apparent than in
the study of economics, where these issues have typically arisen under the
question of how realistic a model must be in order to be acceptable or useful.

In this paper I will present ideas to help resolve these questions. To
motivate the solutions, I will first look at nine models and theories from both
ordinary life and science that illustrate key points. Then I will discuss how
experiments can be understood to confirm or disconfirm a theory, and how
disconfirming experiments lead us to modify theories. I will then show how these
answers can resolve the large debates in economics about how realistic a model
should be and the relation of models in economics to prediction and practice.

Analogies
We can better understand the reasoning involved in using models by first looking
at reasoning by analogy.

A comparison becomes reasoning by analogy when a claim is being argued
for: On one side of the comparison we draw a conclusion, so on the other side we
are justified in drawing a similar conclusion.

The difficulty in reasoning by analogy is to make clear what we mean by
“a similar conclusion” and to justify that inference in terms of the comparison.
The justification calls for some general claim under which the two sides of the
comparison fall. Often analogies are so sketchy, with only the comparison
offered, that their main value is to stimulate us to search for such a general claim.
It must be one that relies on the similarities of the two sides of the comparison,
and for which the differences between the sides of the comparison don’t matter.

Analogies, then, involve abstraction from experience: a process of paying
attention to some of our experience and ignoring other parts, the “differences.”
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Epstein, 2002A, discusses analogies more and shows with a series of
examples that the description above is how we use analogies in our daily lives. In
the next section we will see that some models are clearly meant to be used for
reasoning by analogy, while other models can be understood similarly: We ignore
much and then can draw conclusions when the differences don’t matter. This is
the process of reasoning by abstraction.

Examples of models and theories
1. A map of Minersville
Here is an accurate map of Minersville, Utah:
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We can see from this map that the streets are evenly spaced. For example,
there is the same distance between 100 N and 200 N as between 100 E and 200 E.
To the East, the last street is 300 E. There’s no paved road going north beyond
Main St. on 200 E.

That is, from this map we can deduce claims about Minersville, even if
we’ve never been there. But there’s much we can’t deduce: Are there hills in
Minersville? Are there many trees? How wide are the streets? How far apart are
the streets? Where are houses located?

Reasoning about Minersville from this map is reasoning by analogy. The
map is similar to Minersville in the relative position of streets and their orientation
to North. The differences between the map and Minersville aren’t important
when we infer that the north end of 200 W is at 200 N. The map is accurate for
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what it pays attention to, but is not informative about what it ignores.

In contrast, a scale model of a city or a landscape abstracts less (or models
more) from the actual terrain: height and often placements of rivers and trees are
shown. The map of Minersville abstracts more from the actual terrain than a scale
model of that town would, that is, it ignores more.

To use this model is to reason by analogy: We can draw conclusions when
appropriate similarities are invoked and the differences don’t matter. The general
principle, in this example, is not stated explicitly. The discussion above suggests
how we might formulate one, but it hardly seems worth the effort. We can “see”
when someone has used a map well or badly.2

2. Models of the solar system
Here is a sketch of the model of the universe that the Egyptian astronomer
Ptolemy proposed in the Second Century A.D.

Ptolemy’s model

This map of the universe is meant to show the relative positions of the
planets, sun, and moon, and the ways they move. We can’t deduce anything
about, say, the size of the planets, the distances between them, nor the speeds at
which they move, because this model ignores those. According to this model,
each of the moon, sun, and planets revolves around the Earth in a circular orbit, all
moving in the same direction. Along that orbit, each planet also revolves in a
smaller circle, called an “epicycle.” The sun, Earth, and Venus are always
supposed to be in a line as shown in the picture. Ptolemy made a lot more claims
about the planets, Earth, and sun that were to be used in making predictions, but
for our purposes this sketch will do.

2 Yet when I asked a friend from Colombia to read a map for me when we were driving, she
was incapable, since she had no experience reading road maps.
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Ptolemy’s model accorded pretty well with observations of the movements
of the planets and was the generally accepted way to understand the universe for
many centuries. But in 1543 the Polish astronomer Copernicus published a book
with a different model of the universe.

Copernicus’ model

This sketch, too, abstracts a lot from what is being modeled. The sun is
shown to be larger than the planets, but that’s all we see about their relative sizes.
We can’t tell from the picture whether the orbits are all on the same plane or on
different planes. We do see that the planets all revolve in the same direction, and
that the Earth, sun, and Venus do not always stay lined up.

Ptolemy accounted for the motion of the sun, planets, and stars in the sky by
saying they revolved around the Earth every 24 hours. Copernicus accounted for
those motions by saying that the Earth revolved around its own axis every 24
hours. How could someone in the late 16th Century decide between these two
models? Both were in accord with the observations that had been made.

In the early 1600s the telescope was invented, and in 1610 Galileo built his
own telescope with a magnification of about 33 times, using it to study the skies.
One of his students suggested an experiment that might distinguish between the
Ptolemaic and Copernican models. Venus was too far from the Earth to be seen
as anything other than a spot of light. But according to Ptolemy’s model, viewed
from the earth, at most only a small crescent-shaped part of Venus will ever be
illuminated by the sun when Venus is at the extreme distance from the sun in its
epicycle. From Copernicus’ model, however, we can deduce that from the earth
Venus should go through all the phases of illumination, just like the moon: full,
half, crescent, dark, and back again. Galileo looked at Venus through his
telescope for a period of time and saw that it exhibited all phases of illumination,
and this he took to be proof that Copernicus’ model was correct.

Not a lot of other people were convinced, however. Telescopes were rare
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and not very reliable: they introduced optical illusions such as halos from the
imperfections in the glass and the mounting. Why should astronomers have
trusted Galileo’s observations?

It was more due to Newton that something like Copernicus’ model of the
universe was finally accepted. Newton deduced from his laws of motion that the
orbits of the Earth, sun, and the planets would have to be ellipses, not circles.
And the distances between them would have to be much greater than supposed.
Using Newton’s laws, Edmond Halley predicted correctly the return of a comet
that had been observed in 1682. Telescopes were better, with fewer optical
illusions, and common enough that most astronomers could use one, so better and
better observations of the planets and stars could be made. Those observations
could be deduced from the Copernican-Newtonian model, while new epicycles
had to be invented to account for them in the Ptolemaic model.

Note that each model is supposed to be similar to the universe in only a few
respects, ones that would have an effect on how we could see the objects in the
universe from the earth. Differences, such as whether Venus is rocky or gaseous,
are not supposed to matter for those observations. If the model is correct, then
reasoning by analogy — very precise analogy —certain claims can be deduced.

3. The kinetic theory of gases

This theory is based on the following postulates, or assumptions.

1. Gases are composed of a large number of particles that behave like hard,
spherical objects in a state of constant, random motion.

2. The particles move in a straight line until they collide with another particle or
the walls of the container.

3. The particles are much smaller than the distance between the particles. Most
of the volume of a gas is therefore empty space.

4. There is no force of attraction between gas particles or between the particles
and the walls of the container.

5. Collisions between gas particles or collisions with the walls of the container
are perfectly elastic. Energy can be transferred from one particle to another
during a collision, but the total kinetic energy of the particles after the
collision is the same as it was before the collision.

6. The average kinetic energy of a collection of gas particles depends on the
temperature of the gas and nothing else.

J. Spencer, G. Bodner, and L. Rickard, Chemistry, 1998

Here is a picture of what is supposed to be going on in a gas in a closed container.

7 - % P The molecules of gas are represented as dots,
e Z as if they were hard spherical balls. The
T - length of the line emanating from a particle

;\ f . N models the particle’s speed; the arrow
: models the direction the particle is moving.

The kinetic energy of a particle is defined in terms of its mass and velocity; the
model defines what is meant for a collision to be elastic.3
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What are we to make of these assumptions of the kinetic theory of gases?
Some are certainly false: Molecules of gas are not generally spherical and are
certainly not solid; the collisions between molecules and the walls of a container
or each other are not perfectly elastic; there is some gravitational attraction
between the particles and each other and also with the container.

However, seen as reasoning by analogy, these assumptions can be invoked
to make predictions. We are comparing molecules of gases in a closed container
to hard spherical objects in a state of constant random motion.

But no such hard spherical objects actually exist. So is the comparison, the
analogy, to an imaginary situation, to something called “ideal gas™?

We can view the model as proceeding by abstraction: To the extent that we
can ignore how the shape of molecules of gases is not spherical, and ignore the
physical attraction between molecules, and . . . , we can draw conclusions that
may be applicable to actual gases. To the extent that the differences between
actual gases and the abstractions don’t matter, we can draw conclusions. But how
can we tell if the differences matter?

The model suggests that the pressure of a gas results from the collisions
between the gas particles and the walls of the container. So if the container is
made smaller for the same amount of gas, the pressure should increase; and vice-
versa, if the container is made larger, the pressure should be less. So the pressure
should be proportional to the inverse of the volume of the gas. That is, the model
suggests a claim about the relationship of pressure to volume in a gas. Experi-
ments can be performed, varying the pressure or volume, and they are close to
being in accord with that claim.

Other laws are also suggested by the model: Pressure is proportional to the
temperature of the gas, where the temperature is taken to be the average kinetic
energy of the gas. The volume of the gas should be proportional to the temper-
ature. The amount of gas should be proportional to the pressure. All of these are
confirmed by experiment.

Those experiments confirming predictions from the model do not mean the
model is more accurate than we thought. Collisions still aren’t really elastic;
molecules aren’t really hard spherical balls. The kinetic theory of gases is a map,
useful where the differences don’t matter.

4. Euclidean geometry
Euclidean plane geometry speaks of points and lines: a point is location without
dimension, a line is extension without breadth. No such objects exist in our
experience. But Euclidean geometry is remarkably useful in measuring and
calculating distances and positions in our daily lives.

Points are abstractions of very small dots made by a pencil or other

3 n contrast, here is a picture of what happens in an inelastic collision

between a rubber ball and floor. Each time the ball hits the ground, O\
o/ov\‘o

some of its kinetic energy is lost either through being transferred to
the floor or in compressing the ball.
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implement. Lines are abstractions of physical lines, either drawn or sighted. So
long as the differences don’t matter, that is, so long as the size of the points and
the lines are very small relative to what is being measured or plotted, we can rely
on whatever conclusions we draw.

No one asks (anymore) whether the axioms of Euclidean geometry are true.
Rather, when the differences don’t matter, we can calculate and predict using
Euclidean geometry. When the differences do matter, as in calculating paths of
airplanes circling the globe, Euclidean plane geometry does not apply, and
another model, geometry for spherical surfaces, is invoked.

Euclidean geometry is a deductive theory: A conclusion drawn from the
axioms is accepted only if the inference is valid. It is a purely mathematical
theory, which, taken as mathematics, would appear to have no application since
the objects of which it speaks do not exist. But taken as a model it has
applications in the usual sense, reasoning to conclusions when the differences
don’t matter.

Some people, however, invoke points and lines as actual things, abstract,
non-sensible things, which then provide the other side of the analogy. To reason
solely by abstraction without positing the other side for an analogy seems to
impede our ability to imagine clearly. There is no harm in such imaginings, so
long as we are clear that the abstract things of which we speak are nothing more
than what is left when we ignore much of our experience; they are meant to fill
out our picture.4

5. The acceleration of falling objects
Galileo argued that falling objects accelerate as they fall: They begin falling
slowly and fall faster and faster the farther they fall. He didn’t need any
mathematics to demonstrate that: A heavy stone dropped from 6 meters will drive
a stake into the ground much farther than if it is dropped from 6 centimeters.
Galileo also said the reason that a feather falls more slowly than an iron ball
when dropped is because of the resistance of air. He argued that at a given
location on the earth and in the absence of air resistance, all objects should fall
with the same acceleration. He claimed further that the distance traveled by a
falling object is proportional to the square of the time it travels. Today, from
many measurements, the equation is given by:

(*)  d=9.80 meters /gec2 - t2 t measured in seconds

For example, if you drop a ball from the Empire State Building, after 4 seconds it
should travel: d = 9.80 m /g2 - (4 sec)?2=156.8 m .

The equation (*) is a model by abstraction: We ignore air resistance and the
shape of the object, considering only the object’s mass and center of gravity. If
the differences don’t matter, then a calculation from the equation, which is really

4 Another view of Buclidean geometry is that the axioms implicitly define the subject matter.
But since there is nothing in experience that precisely fits those axioms, the subject matter, again,
must be abstract things.
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a deduction, will hold. But often the differences do matter. Air resistance can
slow down an object: If you drop a hat from an airplane, it will reach a maximum
velocity when the force of the air resistance equals the force of acceleration.

With this model there is no visual representation of that part of experience
that is being described. There is no point-to-point conceptual comparison, nor are
we modeling a static situation. The model is couched in the language of
mathematics; equations can be models, too.

6. Newton’s laws of motion and Einstein’s theory of relativity

Newton’s laws of motion are taught in every elementary physics course and are
used by physicists. Yet modern physics has replaced Newton’s theories with
Einstein’s and quantum mechanics. Newton’s laws, physicists tell us, are false.

But can’t we say that Newton’s laws are correct relative to the quality of
measurements involved, even though Newton’s laws can’t be derived from
quantum mechanics? Or perhaps they can if a premise is added that we ignore
certain small effects? Yet how is that part of a theory?

A theory is a schematic representation of some part of the world. We draw
conclusions from the representation (we calculate or deduce). The conclusion is
said to apply to the world. The reasoning is legitimate so long as the differences
between the representation and what is being represented don’t matter. Newton’s
laws of motion are “just like” how moderately large objects interact at moderately
low speeds; we can use those laws to make calculations so long as the differences
don’t matter. Some of the assumptions of that theory are used as conditions to tell
us when the theory is meant to be applied.

7. Ether as the medium of propagation of light waves

In the 19th Century light was understood as waves. In analogy with waves in
water or sound waves in the air, a medium was postulated for the propagation of
light waves: the ether. Using that assumption, many predictions could be made
about the path of light in terms of its wave behavior. Attempts were made to
isolate or further verify the existence of the ether. But the predictions that were
made turned out to be false. When a better theory was postulated by Einstein, one
which assumed no ether and gave as good or better predictions in all cases where
the ether assumption did, the theory of ether was abandoned.

8. Classical propositional logic

Suppose we ignore everything about claims except whether they are true or false
and how they are built up as compounds using “and”, “or”, and “not”. We can
use the symbols A, v, and 7 to stand for these abstracted versions of the
connectives. Then the following tables summarize the usual classical under-
standing of how the truth-value of a compound relates to the truth-value of its
parts, where A, B stand for claims, and T stands for “true,” F for “false.”
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A| B| AAB A| B| AvB A|1A
T T T T T T T F
T| F F T| F| T F T
F | T F Fl| T T
F| F F FI F F
There is also a table for “if . . . then . . .”, but these tables are enough for our

discussion. Using them repeatedly we can calculate the truth-value of any
compound claim built using “and”, “or”, and “not” if we know the truth-values of
its parts. For example, “Either Ralph is a dog or Howie is not a cat, and George is
a duck, but Birta is a dog” would correspond to (A v 1B) A (CA D). Using these
determinations, we can model whether one claim follows as conclusion from a
finite set of other claims: It must be impossible for all the premises to be true and
the conclusion false at the same time, which is the case based solely on the form
of the propositions (relative to these connectives) if there is no assignment of
truth-values to the premises that makes all of them true and the conclusion false.

This model or theory of reasoning is quite different from the other models
we’ve seen. Though it is in some part descriptive and begins with abstractions
from ordinary language, it is not the worse for finding that people do not reason as
it describes. Though it may be thought of as describing nonsensible, abstract
propositions of which it makes correct predictions, as a model of reasoning its role
is prescriptive. It says that this is the correct way to reason.

Or rather, it says that this is the correct way to reason so long as the
differences don’t matter. But if the differences do matter, say if we wish to
suspend judgment on some claims and see where that leads us, then this model
won’t be useful for drawing conclusions about how we should reason.

Typically in presenting this model, logicians do not point out the general
principle on which it is based: The model is applicable when all that is of concern
in reasoning is whether a claim is true or false and how it is built up in terms of
these connectives. If we focus on the result of the abstracting and invoke abstract
propositions as the subject matter of logic, then it is hard to see the general
principle or even to conceive of the model as an abstraction from experience.

9. Electrical switches
We can model circuits of electrical switches using the same tables as for classical
logic. Instead of “true” and “false,” T and F stand for “on” and “off,” where these
are the only two possibilities for the switches.

A series combination of switches A and B is:

o« (A (B)

The picture is meant to convey that there is a wire, the line, connecting the
switches to two terminals, the dots. Current flows through a switch if it is on, and
not through it if it is off. Current will flow through a series combination exactly
when both switches are on, just as the table for A tells us.

A parallel combination of switches A and B is:
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Current will flow through a parallel combination exactly when one or the other or
both switches are on, just as the table for v tells us.

If we let 1A stand for a switch that is off when A is on, and on when A is
off, then we can model any circuit built from these kinds of switches using the
tables for A, v,and 1 . For example, (AvB) A (MAAC) v (DA 1B)) models:

® —©
Lol lo o

Depending on how we view the mathematics, the analogy is between the
symbols and the way we manipulate them on the one hand and the circuits on the
other, or it is between reasoning with claims and switching circuits. Either way,
we can draw conclusions about the flow of electricity in very complicated circuits
using this model, so long as we can ignore the differences: the wire has length and
diameter and electrical resistance; switches aren’t just on or off, but have some
short period where the current is neither fully on or off when they are switched;
and so on. This model is descriptive, not prescriptive.

Models, theories, and truth

We have seen models of static situations (the map) and of processes (acceleration
of falling objects, gases in a container). We have seen examples of models that
are entirely visual, intended as point-to-point comparisons, and of models
formulated entirely in terms of mathematical equations. We have seen models
where the assumptions of the model are entirely implicit (the map) and models
where the assumptions are quite explicit (Newton’s laws of motion).

In all the examples either the reasoning is clearly reasoning by analogy or
can be seen as proceeding by abstraction much as in reasoning by analogy. We do
not ask whether the assumptions of a theory or model are true, even if that was the
intention of the person who created the theory. Rather, we ask whether we can
use it in the given situation: Do the similarities that are being invoked hold and do
the differences not matter? Even in the case of Newton’s laws of motion, where it
would seem that what is at stake is whether the assumptions are true, we continue
to use the model when we know that the assumptions are false in those cases
where, as in any analogy, the differences don’t matter.> In only one example

S ¢, Kittel, W. D. Knight, and M. A. Ruderman, 1965, pp. 55-56 say in their textbook:

Newton’s third law. Whenever two bodies interact, the force F,, on the second body (2)
due to the first body (1) is equal and opposite to the force F,; on the first (1) due to the
second (2): F, =—F,, . There are inherent limitations to the validity of the third law: we
believe . . . that all signals or forces have a finite propagation velocity. The third law,
however, states that F, is equal and opposite to F,; when both are measured
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did it seem that what was at issue was whether a particular assumption of the
theory was actually true of the world (the ether).

Laws in science are false when we consider them as representing all aspects
of some particular part of our experience.® The key claim in every analogy is
false in the same way. When we say that one side of an analogy is “just like” the
other, that’s false. What is true is that they are “like” one another in some key
respects that allow us to deduce claims for the one from deducing claims for the
other. In the same way we can use the assumptions of the theory so long as the
differences —what we ignore —don’t matter.

The exact conditions for an analogy or abstraction to qualify as a model or a
theory seem to be quite informal. The term model seems to be more readily
applied to what can be visualized or made concrete, while the term theory seems
to be applied to analogies that are fairly formal and have very explicitly stated
assumptions or general principles. But in many cases it is as appropriate to call an
example a theory as to call it a model, and there seems to be no definite
distinction between those terms.’

Theories and confirmation
From theories we can make predictions, and we say that when a prediction turns
out to be true it confirms (to some degree) the theory. But this is not the same as
confirming an explanation. As discussed in Epstein, 2002B, confirming an
explanation is understood as showing (to some degree) that the claims doing the
explaining are true, whereas we have seen that it rarely makes sense to say that the
claims that make up a theory —the assumptions of the theory —are true or false.
We cannot say that verifications of the relation of pressure, temperature, and

at the same time. This requirement is inconsistent with the finite time interval required
for one particle to feel the force the second particle is exerting. In atomic collisions the
third law is therefore not always a good approximation. In automobile collisions it is
quite a good approximation, because the duration of the collision is long in comparison
with the time it takes a light signal to traverse a crumpled automobile.

6 Michael Scriven, 1961 and 1962, discusses this issue. In Scriven, 1962, p. 212 he says:

The examples of physical laws with which we are all familiar are distinguished by one
feature of particular interest for the traditional analyses [of explanations] —they are virtually
all known to be in error. Nor is the error trifling, nor is an amended law available which
corrects for all the error. The important feature of laws cannot be their literal truth.

Nancy Cartwright, 1981, p. 381 says:

What is important to realize is that if the theory is to have considerable explanatory
power, most of its fundamental claims will not state truths, and that this will in general
include the bulk of our most highly prized laws and equations.

7 Compare Jack Birner, 2002 (discussed on pp. 109-117 of this volume of BARK):

It is quite common to use “theory” for a set of abstract propositions and “model” for a set
of propositions on a lower level of abstraction. .. .[T]he question of whether or not
something is called a theory or a model is mostly a matter of convention. What matters is
how theories or models of different degrees of idealization are related, i.e. their relative
levels of abstraction. Therefore, I will use “theory” and “model” interchangeably.



90 Richard L. Epstein

volume in a gas confirm that molecules are hard little balls and that all collisions
are completely elastic. We cannot say that a carpenter’s square fitting exactly into
a wooden triangle that is S5cm x 4cm x 3cm confirms the theorem of Pythagoras.
Nor can we say that finding a tree at the corner of 100 W and 100 S in Minersville
disconfirms the model given by the map of Minersville.

Except in rare instances where we think (usually temporarily) that we have
hit upon a truth of the universe to use as an assumption in a theory, we do not
think that the assumptions of a theory are true or false. Theories are best
understood as analogies or abstractions, and they can only be true in the sense of
correctly representing that part of the world they are meant to represent in a
particular situation. In brief, we can only say of a theory such as Euclidean plane
geometry or the kinetic theory of gases that it is applicable or not in a particular
situation we are investigating, where a “situation” is just some part of the world
we can describe using claims.

To say that a theory is applicable is to say that though there are differences
between the world and what the assumptions of the theory state, those differences
don’t matter for the conclusions we wish to draw. Often we can decide if a theory
is applicable only by attempting to apply it. We use the theory to draw conclu-
sions in particular instances, claiming that the differences don’t matter. If the
conclusions —the predictions—turn out to be true (enough), then we have some
confidence that we are right. If a prediction turns out false, then the model is not
applicable there. We do not say that Euclidean plane geometry is false because it
cannot be used to calculate the path of an airplane on the globe; we say that
Euclidean plane geometry is inapplicable for calculating on globes.

When we make predictions and they are true, we confirm a range of applica-
tion of a model. When we make predictions and they are false, we disconfirm a
range of application, that is, we find limits for the range of application of a model.
More information about where the model can be applied and where it cannot may
lead, often with great effort, to our describing more precisely the range of applica-
tion of a model. In that case, the claims describing the range of application can be
added to the theory. We often use mathematics as a language for making the art
of analogy precise. For example, for Newton’s laws of motion we can give limits
on the size and speed of objects for which the theory is applicable. But in many
cases it is difficult to state precisely the range of application. In other cases, such
as the map of Minersville, it hardly seems worthwhile to state explicitly the range
of application.

We want our theories to be as widely applicable as possible. Eventually we
hope to find theories whose range of application can be precisely and clearly
stated, where we can say that the theory is applicable whenever this is the case,
where we are justified in saying that the theory is true.

But even then we would not be justified in saying that a particular claim that
is used as an assumption of the theory is true. Rather, the claim is true in those
situations in which the theory as a whole is applicable .
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Many other terms are used to describe theories: a theory is valid, a theory is
true, a theory holds, a theory works for, . .. . I can find no other sense to these
than to assimilate them to the question of whether a particular situation, or class of
situations, to which we wish to apply a theory is within the range of the theory.

Modifying theories in the light of the evidence

How do we determine whether a theory is good? How do we determine whether
one theory is better than another? As we have seen, the criteria cannot in general
include whether the assumptions of the theory are true, or, as is sometimes said,
“realistic.” Here is what Milton Friedman says:

In so far as a theory can be said to have “assumptions” at all, and insofar as
their “realism” can be judged independently of predictions, the relation
between the significance of a theory and the “realism” of its “assumptions” is
almost the opposite of that suggested by the view under criticism. Truly
important and significant hypotheses will be found to have “assumptions”
that are wildly inaccurate descriptive representations of reality, and, in
general, the more significant the theory, the more unrealistic the assumptions
(in this sense). The reason is simple. A hypothesis is important if it
“explains” much by little, that is, if it abstracts the common and crucial
elements from the mass of complex and detailed circumstances surrounding
the phenomena to be explained and permits valid predictions on the basis of
them alone. To be important, therefore, a hypothesis must be descriptively
false in its assumptions; it takes account of, and accounts for, none of the
many other attendant circumstances, since its very success shows them to be
irrelevant for the phenomena to be explained.

To put the point less paradoxically, the relevant question to ask about
the “assumptions” of a theory is not whether they are descriptively
“realistic,” for they never are, but whether they are sufficiently good
approximations for the purpose in hand. And this question can only be
answered by seeing whether the theory works, which means it yields
sufficiently accurate predictions.9

Friedman, then, agrees with what I have said. But in the last sentence he
goes further. He, and many others following him, say that the sole criterion for
judging whether a theory is good (or as he says, “valid”) is whether it yields
sufficiently accurate predictions. As he says,

The only relevant test of the validity of a hypothesis is comparison of its
predictions with experience.10

Certainly it is important to get good predictions. But if the assumptions are

8 “Galileo said that a body subject to no forces has a constant velocity. (This is called
Newton’s first law of motion.) We have seen that this statement is true only in an inertial
reference system—it defines an inertial system.” Kittel et al., 1965, p. 61

9 Friedman, 1953, pp. 14-15.

10" Friedman,1953, p. 8. Compare Stephen E. Landsburg, 1993, p. 10, “Assumptions are not
tested by their literal truth but by the quality of their implications.”
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neither true nor true for the situation being analyzed, on what basis should we
base our acceptance of further predictions? A good track record in the past? But
who has been keeping score? Perhaps it is just judicious uses of the theory,
always supplemented with assumptions —often unstated —that result in
predictions that are sufficiently accurate. What allows us to distinguish between
a theory that makes good predictions whose assumptions are clearly false in the
case at hand and astrology? After all, for many centuries astrology was the best
theory around for divining human fate. Its predictions often came true, since they
were sufficiently vague to allow that. And few people were keeping track of the
predictions that turned out false.

There must be some criterion beyond the truth of predictions made using the
theory that counts for whether a theory is good. Consider what we do when we
discover that a prediction made using a theory is false.

When the theory of switching circuits predicts inaccurately for transistors,
we look for what differences matter: What have we ignored in the case at hand
that results in false predictions? Switches are not instantaneously on or off, there
is electrical resistance, . . . . We then factor those aspects of the situation into our
new theory.

When Newton’s laws of motion result in inaccurate predictions for objects
moving near the speed of light, we note that the theory had been assumed true for
all sizes and speeds of objects and then restrict the range of application.

Even the prescriptive theory of classical propositional logic has been
modified. When predictions made using it (certain inferences shown to be valid
based on its assumptions) were found to be anomalous, counterintuitive, and not
good prescriptions for reasoning, attention turned to what aspects of claims had
been ignored. Certain differences matter, and depending on what aspects are
considered significant, such as subject matter or ways in which the claim could be
true, different propositional logics have been set out as models of reasoning.!!

On the other hand, when the theory of the ether resulted in false predictions,
no modification was made to the theory, for none could be made. That theory did
not abstract from experience, ignoring some aspects of situations under consider-
ation, but postulated something in addition to our experience, something we were
able to show did not exist. The theory was completely abandoned.!2

When we find that a prediction is false we have three choices:

I gee Epstein, 2000.

12 David Isles (personal communication) disagrees: “How is the ether any less of an abstraction
from experience than, say, the notion of force or even the notion of energy as it appears in physics.
Thus, we experience water which carries water waves, we experience less substantial air which
carries sound waves, and (a slight abstraction from experience) we have a very insubstantial fluid
which carries light waves.” Isles is correct that we can hypothesize the existence of an ether by
analogy with those other mediums of transmission, but that is distinctly different from beginning
with something of experience and ignoring some of its properties. The notions of force and energy
in physics are not postulated to be things or substances; see the discussion of this point in relation
to the nature of cause and effect in Epstein, 2001, p. 203.
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1. The theory or model can be understood as an analogy or for use as
reasoning by abstraction. That is, many aspects of our experience are
ignored and only some few are considered significant. Then tracing
back along that path of abstraction we can try to distinguish what
difference there is between our model and our experience that matters.
What have we ignored that cannot in this situation be ignored?

If we cannot state precisely what difference it is that matters in
some general way, then at best the false prediction sets some limit on
the range of applicability of the model or theory. We cannot use the
theory here —where “here” means this situation or ones that we can see
are very similar.

But we are driven to find precisely the difference that matters and
try to factor it into our theory. That is, we try to devise a complication
of our theory in which that aspect of our experience is taken into
account. As with Einstein’s improvement of Newton’s laws, we get a
better theory that is more widely applicable and which explains why
the old theory worked as well as it did and why it failed in the ways it
failed. We improve the map: By adding further assumptions we can
pay attention to more in our experience, and that accounts for the
differences between the theories.

2. Some theories, such as the theory of the ether, are not based on
abstraction but postulate entities or aspects of the world in addition to
what we have from our experience or other trusted theories. In that
case a false prediction, or more usually many false predictions, lead us
to consider such a postulate to be false. We abandon the theory.

3. One of our examples, however, does seem to fit Friedman’s
prescription for deciding whether a theory is good. Modern physics
says that there is no preferred frame of reference in the universe.
Hence, so far as the truth of the assumptions or their applicability to
the case at hand, the Ptolemaic model of the universe is as good as the
Copernican. But we choose the Copernican model because it yields
better predictions. We can always modify the Ptolemaic system to
account for observations by adding more epicycles. That will yield
true predictions in some limited cases, but will rarely work for other
objects than the one for which an epicycle is posited. Moreover, the
explanations we can make of the movement of planets and other
objects in the solar system are clearer and simpler in the Copernican
model: It produces better explanations.

The truth of the assumptions does matter for some theories: those based on
claims that are not abstractions from experience. When it makes sense to talk of
the truth or falsity of a particular dubious claim among the assumptions of a
theory, deriving true predictions from the theory can help to confirm that claim;
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a false prediction may serve to prove the dubious assumption false.

A theory that is meant as an analogy or abstraction from our experience,
ignoring much of what we wish to study and focusing only on what we consider
the most important aspects, comes with an (often implicit) range of application.
Deriving a true prediction from such a theory confirms to some extent that range
of application. A false prediction can serve to set limits on the range of
application. False predictions can also lead us to prefer a simpler theory based
on abstraction that yields better predictions.

True predictions are never enough to justify a theory. Indeed, the problem is
that we do not “justify” a theory, nor show that it is “valid.” What we do in the
process of testing predictions is show how and where the theory can be applied.
And for us to have confidence in that, either we must show that the claims in the
theory are true or show in what situations the differences between what is
represented and the abstraction of it in the theory do not matter. True (enough)
predictions help in that. But equally crucial is our ability to trace the path of
abstraction so that we can see what has been ignored in our reasoning and why
true predictions serve to justify our ignoring those aspects of experience. Without
that clear path of abstraction, all we can do is try to prove that the claims in the
theory are actually true. Without that clear path or without reason to believe the
claims are true, we have no more reason to trust the predictions of a theory than
we have to trust the predictions of astrology.

When there is no path of abstraction: a model in economics

Milton Friedman’s analysis of theories discussed above was meant to justify
theories of conventional (classical, orthodox, neo-classical) economics, such as
the theory of competitive equilibrium. Such theories begin with the assumption
that all persons involved in the market are rational in the following sense:

1. People are motivated solely by the goal of maximizing utility.

2. They have fixed, transitive preferences.

3. They have available to them all the relevant information and use it.
4. They reason perfectly.

These assumptions about people are false, and have been demonstrated to be
false in many behavioral studies.!3 This has led to the charge that predictions
from such theories cannot be relied on. The theories are charged with having
“unrealistic” premises.!#

But, as we saw above and as Friedman stressed, false, unrealistic premises
do not disqualify a theory from being very useful, that is, from giving us good
reason to believe that its predictions are true. From assumptions that are
abstractions from experience and which in no sense could be true, not even in
particular cases as with Euclidean geometry, we can reason to conclusions in
which we are justified in having great confidence. Hence, the charge by many

13" See Richard H. Thaler, 1991, for a discussion and references.
14 For a discussion and references see Mark Blaug, 1980.
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economists that theories based on the assumption that people are rational are
unrealistic is not a serious criticism of such theories.

The question for such theories is what is the range of application for
reasoning by them. When we obtain false predictions, how can we use those
to clarify the limits of the range of application and improve the theory? And
certainly with theories based on the assumption that people are rational there
are plenty of false predictions.!?

Let us ask how we can trace back the path of abstraction for assumptions
(1)—(4) to modify them to obtain better theories.

With (1) it is clear: We can assume other motives of people. Doing so
complicates the models, but can yield better theories. We can also assume that
people want only to satisfy some level of utility rather than maximizing.!©

But for each of (2)—(4) there is a problem: What is being abstracted from
experience to create these assumptions of the theory?

Certainly people do not have fixed transitive preferences.!” But what is it
that we are ignoring in their behavior that allows us to assume they do? At best
we can say that sometimes they have fixed transitive preferences, and in those
cases the theory should apply.

When do people have all the relevant information and use it in making
decisions? Perhaps in very restricted situations, such as buying and selling
currencies. False predictions from this assumption would limit the theories to
such cases. Or models can be devised which take into account limited access to
relevant information.!8

But for (4) there is no such obvious route to limiting the range of application
of the theories. It is not simply that people do not normally reason well. It is not
that they do not want to reason well. Rather, most people do not have the skills to
reason as well as demanded by theories based on the assumption that people are
rational, as any teacher of critical thinking can attest.! The norms of reasoning
well are prescriptive, not descriptive.

There is no abstraction from experience in postulating that people reason
perfectly. To assume that people are rational is to ascribe capabilities to people
that they do not have. It is not like Euclidean geometry, where we ignore much
from experience; it is like postulating the existence of an ether, where we assume

15 See, for example, Blaug, 1980, or Thaler, 1991, or Paul Ormerod, 1998.

16 See Gerd Gigerenzer and Reinhard Selzen, 2001, which also discusses the history of this
notion of rationality.

17 Thaler, 1991, cites numerous psychological studies to this effect.

18 See again Gigerenzer and Selten, 2001.

19 There is an additional problem in applications of the assumption of rationality. It requires not
just that people reason well one inference at a time. Rather, in making decisions it is assumed that
people can survey all information and all consequences of certain assumptions at once. That is,
people are assumed to be able to survey a completed infinite set. This contrasts with, say,
Euclidean geometry, which, in applications, requires only a potentially infinite set of points:

we can always find an additional point as required by the axioms.
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something of the world that is in addition to what we know there is.

There is no point along the path of abstraction where we can modify theories
based on the assumption that people are rational in order to take into account
some further aspect of their reasoning. The moment we assume that people
reason well only some times, there is no longer a model. As with theories built on
the assumption that there is an ether, when we encounter false predictions we can
only abandon the theory.

But sometimes theories of conventional economics do predict well.
Friedman would account for that and justify the use of such theories by saying
that though people do not act rationally, they act “as if ” they are rational. It is
worth quoting him at length to see how his justification proceeds.

Consider the density of leaves around a tree. I suggest the hypothesis that the
leaves are positioned as if each leaf deliberately sought to maximize the
amount of sunlight it receives, given the position of its neighbors, as if it
knew the physical laws determining the amount of sunlight that would be
received in various positions and could move rapidly or instantaneously from
any one position to any other desired and unoccupied position. Now some of
the more obvious implications of this hypothesis are clearly consistent with
experience: for example, leaves are in general denser on the south than on the
north side of trees but, as the hypothesis implies, less so or not at all on the
northern slope of a hill or when the south side of the trees is shaded in some
other way. Is the hypothesis rendered unacceptable or invalid because, so far
as we know, leaves do not “deliberate” or consciously “seek,” have not been
to school and learned the relevant laws of science or the mathematics to
calculate the “optimum” position, and cannot move from position to
position? Clearly, none of these contradictions of the hypothesis is vitally
relevant; the phenomena involved are not within the “class of phenomena the
hypothesis is designed to explain”; the hypothesis does not assert that leaves
do these things but only that their density is the same as if they did. Despite
the apparent falsity of the “assumptions” of the hypothesis, it has great
plausibility because of the conformity of its implications with observation.
We are inclined to “explain” its validity on the ground that sunlight
contributes to the growth of leaves and that hence leaves will grow denser or
more putative leaves survive where there is more sun, so the result achieved
by purely passive adaptation to external circumstances is the same as the
result that would be achieved by deliberate accommodation to them. This
alternative hypothesis is more attractive than the constructed hypothesis not
because its “assumptions” are more “realistic” but rather because it is part of
a more general theory that applies to a wider variety of phenomena, of which
the position of leaves around a tree is a special case, has more implications
capable of being contradicted, and has failed to be contradicted under a wider

variety of circumstances.20

Friedman’s hypothesis about leaves seeking to maximize the amount of
sunlight they receive cannot be used for reasoning by analogy. It does not begin

20 Friedman, 1953, pp. 19-20.
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by either (a) looking at a real situation and comparing it to the growth of leaves,
allowing us to distinguish what are the similarities and what are the differences, or
(b) abstracting from experience to state exactly what are the points of similarity
that are supposed to hold, ignoring all else.

Rather, what he has posited is not an abstraction, but the addition of
properties to a given situation. We are asked to suppose that leaves behave
anthropomorphically with the skills of a terrific calculator. And then we are asked
to ignore that as well. This doesn’t make sense as a method of reasoning: Why
should we have confidence that predictions made from such a hypothesis will be
accurate? That some of the predictions turn out to be accurate cannot be enough,
any more than they are in astrology. We need to know why they turn out accurate
in order to have confidence in the theory or model.

The alternative hypothesis of passive adaptation that he presents is better,
but not for the reasons he gives; rather it is better for the reason he says is not
meaningful. Namely, we have better reason to accept the alternative hypothesis
precisely because we can see that in this case it is reasonable to believe it is true.
No clearly false assumptions incapable of fitting into reasoning by analogy or
abstraction have been made.

Friedman gives another example, which leads to the rationality assumption:

.. . the hypothesis that the billiard player made his shots as if he knew the
complicated mathematical formulas that would give the optimum directions of
travel, could estimate accurately by eye the angles, etc., . .. Our confidence
in this hypothesis is not based on the belief that billiard players, even expert
ones, can or do go through the process described; it derives rather from the
belief that, unless in some way or other they were capable of reaching
essentially the same result, they would not in fact be expert billiard players.

It is only a short step from these examples to the economic hypothesis that
under a wide range of circumstances individual firms behave as if they were
seeking rationally to maximize their expected returns (generally if misleadingly
called “profits”) and had full knowledge of the data needed to succeed in this
attempt; as if, that is, they knew the relevant cost and demand functions,
calculated marginal cost and marginal revenue from all actions open to them,
and pushed each line of action to the point at which the relevant marginal cost
and marginal revenue were equal. Now, of course, businessmen do not actually
and literally solve the system of simultaneous equations in terms of which the
mathematical economist finds it convenient to express this hypothesis, any more
than leaves or billiard players explicitly go through complicated mathematical
calculations or falling bodies decide to create a vacuum. . . .

Confidence in the maximization-of-return hypothesis is justified by
evidence of a very different character [from the truth of its assumptions].

This evidence is in part similar to that adduced on behalf of the billiard-player
hypothesis—unless the behavior of businessmen in some way or other
approximated behavior consistent with the maximization of returns, it seems
unlikely that they would remain in business for long. Let the apparent
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immediate determinant of business behavior be anything at all —habitual
reaction, random chance, or whatnot. Whenever this determinant happens to
lead to behavior consistent with rational and informed maximization of returns,
the business will prosper and acquire resources with which to expand; whenever
it does not, the business will tend to lose resources and can be kept in existence
only by the addition of resources from the outside. The process of “natural
selection” thus helps to validate the hypothesis—or, rather, given natural
selection, acceptance of the hypothesis can be based largely on the judgment that
it summarizes appropriately the conditions for survival 21

Just as Friedman is wrong about the leaves, he is wrong about the billiard
player, and hence wrong in his justification of the maximization-of-return
hypothesis. Moreover, he has hit—unwittingly —on the greater problem with both
the billiard-player and the maximization-of-return hypotheses: they can only
explain success, not failure of the agent. They apply to much less of the situation
than is needed to make a good model: How do we explain the failure of a billiard
player to make a shot? He was calculating badly? How do we explain the
bankruptcy of a company? They weren’t calculating correctly? A good model of
either situation has to account for failure as well as success, for all the “players.”

Friedman introduces his “as if” talk in order to justify economic theories
based on assuming that people are rational. The problem with the rationality
assumptions, though, as in his examples, is that they are not abstractions but
positing of properties that are clearly false. It matters how assumptions are
derived from experience in order for us to be justified in saying that they do not
have to be true to get good predictions. If they are obtained by abstraction, then
they need not be true: all that matters is the scope of their application. We can
trace back the path of abstraction. But with hypotheses that postulate additional
properties, if those properties are not true —that is, if the model is not applicable
in the case at hand— we have no reason to trust the model .22

It will be extremely difficult to give criteria for what we mean when we say
that an assumption is not an abstraction from experience but rather postulates
something of the world in addition to our experience. But those who wish to base
theories on assumptions that are clearly false have the burden to show in what
way their theories arise by abstraction; it is for them to justify their theories.

Should we then abandon economic theories based on the assumption that
people are rational? Consider a comparison. In mathematical logic certain formal
systems are studied that are modifications of the formal logics meant to formalize
reasoning, yet in which there can be infinitely long sentences used as propositions.
Such an assumption is not an abstraction from actual reasoning, and no one argues
that we should consider such a system as prescriptive of how we should reason.

21 Friedman, 1953, pp. 21-22.

22 There is another oddity in saying that people act as if they are rational when indeed they are
not. Typically, the evidence we invoke for claiming a person is rational is how he or she acts. 1
discuss in an appendix of Epstein, 2001, the problem of when it is appropriate to call someone
“rational” without basing that on the evidence of his or her explicit reasoning.
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Yet neither do logicians say that those who study such systems are not doing
logic. The systems based on infinite sentences are suggested as modifications of
systems that clearly are logic in the sense of models of how to reason well. They
are in the same “family,” the same area of study. They have an internal coherence
and beauty and illustrate many connections between other formal theories. They
are, if you like, “pure” logic.

Throughout mathematics, areas of study that grew out of abstracting from
experience, such as the theory of transfinite numbers, have been developed with
many assumptions that cannot be seen as abstractions yet which have yielded
internally coherent, beautiful theories that often link various other such theories.
This is what is called the study of pure mathematics. Such theories are not
criticized for having no application. Moreover, a pure mathematician is not
expected to understand the applied mathematics used to model, say, ballistics or
biology. Applied mathematics and pure mathematics are related though
independent disciplines.

Economic theories have been developed in the last few decades that abandon
the assumption that people are rational.23 As with applied mathematics, from
which they draw heavily, they are much more complicated. They rarely yield
predictions of specific events so much as describe overall behavior of an
economy, presenting something like the normal conditions from which causal
claims could be derived.2* They are to conventional economics much as applied
mathematics is to pure mathematics. As with pure mathematics, conventional
economics has a great beauty and intellectual attraction and internal coherence
that make it of interest to many and which justify its study. It is up to those who
practice it, however, to justify further why we should have any confidence in its
predictions as applied to experience.2> T hope to have shown here on what
grounds we can judge such justifications.
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