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Preface

Why was the theory of computable functions developed before there were any
computers?

The formal theory of computable functions and their relation to logic arose as
aresponse to the ferment in the foundations of mathematics at the beginning of this
century. The paradoxes of self-reference and the question of how or even whether
we are justified in using infinite sets stood at the center of that development, and
those paradoxes are no less interesting, nor settled, now. Along with readings from
the originators of the subject, the paradoxes and doubts about the infinite serve to
motivate the study of the technical mathematics in this book and place the mathe-
maticsin its history.

Some mathematicians may prefer a straight mathematical development; for
that Part II, Computable Functions, and Part 111, Logic and Arithmetic, will suffice.
In Part Il we describe the notion of computability, present the Turing machine model,
and then develop the theory of partial recursive functions as far as the Normal Form
Theorem. In Part 111 we begin with propositional logic and give an overview of
predicate logic and Godel’ s theorems, which can serve as a summary for a short
course. A full development of the syntactic part of first-order logic and Godel’s
theorems then follows. Part I, The Fundamentals, can be referred to for notation
and basic proof techniques.

Philosophy, however, has been the motive for much of logic and computability.
In Part | we give the philosophical background for discussions about the foundations
of mathematics while presenting the notions of whole number, function, proof, and
real number. Hilbert’s paper “On theinfinite” setsthe stage for the analysis of
computability in Part I1. In Part IV we consider the significance of the technical
work with discussions of Church’s Thesis, constructivity in mathematics, and
mathematics as modeling.

Many exercises are included, beginning gently in Part | and progressing to a
graduate level in the final chapters. The most difficult ones, marked with a dagger
T, may be skipped, although all are intended to be read. Solutions to the exercises
can be found in the Instructor’s Manual (available from the Advanced Reasoning
Forum, www.A dvancedReasoningForum.org), which aso contains suggestions for
course outlines. Sections marked “Optional” are not essential for the technical
development of chapters which follow, although they often provide important
motivation.



For the second edition: Beyond the addition of a timeline on computability

and undecidability written by Epstein, we have confined our changes almost entirely
to technical corrections, adding only two new quotes from Gddel (p. 173 and p. 215).
One noteworthy change is the replacement of Fermat’s Last Theorem by Goldbach’s
Conjecture as an example of an unsolved arithmetic problem used in several
examples; the former has been shown to be true by Andrew Wiles, “Modular elliptic
curves and Fermat’'s Last TheorerAfhnals of Mathematics, second series, vol.

141, 1995, pp. 443-551. Where other authors have used Fermat’'s Last Theorem as
an example (Arend Heyting on p. 234, Nicholas Goodman on p. 259), a similar
substitution of Goldbach’s Conjecture would make the same point.

For the third edition. We have added a chapter that gives avery different view of
mathematics than in the other articlesin the text, viewing mathematics as modeling
and not (necessarily) in need of foundations. It isthe view that underlies our
presentation of the mathematicsin this book.

We have made only minor corrections to the body of the text, retaining the
same pagination. A few small corrections have been made to the timeline.

The story wetell leaves no room to include a presentation of the semantics
of classical predicate logic. That material is now available in a companion to this
volume, Epstein’s Classical Mathematical L ogic, Princeton University Press, 2006.
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